Introduction

The Adirondack Lake Assessment Program is a volunteer monitoring program established by the Residents' Committee to Protect the Adirondacks (RCPA) and the Adirondack Watershed Institute (AWI). The program is now in its' ninth year and continues to grow. The program was established to help develop a current database of water quality in Adirondack lakes and ponds. There were 70 participating lakes in the program in year 2006.

Methodology

Each month participants (trained by AWI staff) measured transparency with a secchi disk and collected a 2-meter composite of lake water for chlorophyll-a analysis and a separate 2-meter composite for total phosphorus and other chemical analyses. The participants filtered the chlorophyll-a sample prior to storage. Both the chlorophyll-a filter and water chemistry samples were frozen for transport to the laboratory at Paul Smith's College.

In addition to the volunteer samples, AWI staff sampled water quality parameters in most of the participating lakes as time and weather allowed. In most instances, a 2-meter composite of lake water was collected for chlorophyll-a analysis. Samples were also collected at depths of 1.5 meters from the surface (epilimnion) and within 1.5 meters of the bottom (hypolimnion) for chemical analysis. Once collected, samples were stored in a cooler and transported to the laboratory at Paul Smith's College.

All samples were analyzed by AWI staff in the Paul Smith's College laboratory using the methods detailed in *Standard Methods for the Examination of Water and Wastewater*, 20th edition (Greenberg, et al, 1999). Volunteer samples were analyzed for pH, alkalinity, conductivity, color, nitrate, chlorophyll a and total phosphorus concentrations.

Results Summary

Sylvia Lake was sampled three times by a volunteer in 2006 at three locations. Samples were collected on the following dates at Station #1 Outlet Marsh: 7/17/06, 8/18/06 and 9/21/06. Samples were collected on the following dates at Station #2 Center and Station #3 Inlet: 7/24/06, 8/21/06 and 9/21/06. Results for 2006 are presented in Appendix A and will be discussed in the following sections. Results are presented as concentrations in milligrams per liter (mg/L) or its equivalent of parts per million (ppm) and micrograms per liter (μ g/L) or its equivalent of parts per billion (ppb).

 $1 \text{ mg/L} = 1 \text{ ppm}; 1 \mu\text{g/L} = 1 \text{ ppb}; 1 \text{ ppm} = 1000 \text{ ppb}.$

Adirondack lakes are subject to the effects of acidic precipitation (i.e. snow, rain). A water body's susceptibility to acid producing ions is assessed by measuring pH, alkalinity, calcium concentrations, and the Calcite Saturation Index (CSI). These parameters define both the acidity of the water and its buffering capacity. Based on the results of the 2006 Adirondack Lakes Assessment program, the acidity status of Sylvia

Lake is considered to be satisfactory with no danger or possible future threat from further acidic inputs due to its' high alkalinity and pH levels.

Limnologists, the scientists who study bodies of fresh water, classify lake health (trophic status) into three main categories: oligotrophic, mesotrophic, and eutrophic. The trophic status of a lake is determined by measuring the level of three basic water quality parameters: total phosphorus, chlorophyll-a, and secchi disk transparency. These parameters will be defined in the sections that follow. Oligotrophic lakes are characterized as having low levels of total phosphorus, and, as a consequence, low levels of chlorophyll-a and high transparencies. Eutrophic lakes have high levels of total phosphorus and chlorophyll-a, and, as a consequence, low transparencies. Mesotrophic lakes have moderate levels of all three of these water quality parameters. Based upon the results of the 2006 Adirondack Lakes Assessment Program, Sylvia Lake is considered to be an oligotrophic water body.

pН

The pH level is a measure of acidity (concentration of hydrogen ions in water), reported in standard units on a logarithmic scale that ranges from 1 to 14. On the pH scale, 7 is neutral, lower values are more acidic, and higher numbers are more basic. In general, pH values between 6.0 and 8.0 are considered optimal for the maintenance of a healthy lake ecosystem. Many species of fish and amphibians have difficulty with growth and reproduction when pH levels fall below 5.5 standard units. Lake acidification status can be assessed from pH as follows:

pH less than 5.0	Critical or Impaired
pH between 5.0 and 6.0	Endangered or Threatened
pH greater than 6.0	Satisfactory or Acceptable

The pH in the upper waters of Sylvia Lake ranged from 7.39 to 7.93. The average pH for outlet marsh was 7.63, for lake center it was 7.61 and for Inlet it was 7.93. Based solely on pH, Sylvia Lake's acidity levels should be considered satisfactory with no harm from further acidic inputs. The pH's for all three stations were very similar.

Alkalinity

Alkalinity (acid neutralizing capacity) is a measure of the buffering capacity of water, and in lake ecosystems refers to the ability of a lake to absorb or withstand acidic inputs. In the northeast, most lakes have low alkalinities, which mean they are sensitive to the effects of acidic precipitation. This is a particular concern during the spring when large amounts of low pH snowmelt runs into lakes with little to no contact with the soil's natural buffering agents. Alkalinity is reported in milligrams per liter (mg/L) or microequivelents per liter (μ eq/L). Typical summer concentrations of alkalinity in northeastern lakes are around 10 mg/l (200 μ eq/L). Lake acidification status can be assessed from alkalinity as follows:

Alkalinity less than 0 ppm	Acidified
Alkalinity between 0 and 2 ppm	Extremely sensitive
Alkalinity between 2 and 10 ppm	Moderately sensitive
Alkalinity between 10 and 25 ppm	Low sensitivity
Alkalinity greater than 25 ppm	Not sensitive

The alkalinity of the upper waters of Sylvia Lake ranged from 79.6 ppm to 124.4 ppm. The average alkalinity for outlet marsh was 99.6, for lake center it was 108.1 ppm, and for inlet it was 100.9 ppm. These values indicate no sensitivity to acidification. The alkalinity for all three stations was very similar.

Calcium

Calcium is one of the buffering materials that occur naturally in the environment. However, it is often in short supply in Adirondack lakes and ponds, making these bodies of water susceptible to acidification by acid precipitation. Calcium concentrations provide information on the buffering capacity of that lake, and can assist in determining the timing and dosage for acid mitigation (liming) activities. Adirondack lakes containing less than 2.5 ppm of calcium are considered to be sensitive to acidification.

The calcium in Sylvia Lake could not be measured in 2006 based on lack of a site visit by AWI staff.

Calcite Saturation Index

The Calcite Saturation Index (CSI) is another method that is used to determine the sensitivity of a lake to acidification. High CSI values are indicative of increasing sensitivity to acidic inputs. CSI is calculated using the following formula:

$$CSI = -\log_{10} \ 40000 \ -\log_{10} \ 50000 \ -pH + 2$$

Where Ca = Calcium level of water sample in ppm or mg/L Alk = Alkalinity of the water sample in ppm or mg/L pH = pH of the water sample in standard units

Lake sensitivity to acidic inputs is assessed from CSI as follows:

CSI greater than 4	Very vulnerable to acidic inputs
CSI between 3 & 4	Moderately vulnerable to acidic inputs
CSI less than 3	Low vulnerability to acidic inputs

CSI values for Sylvia Lake could not be calculated without calcium concentrations.

Total Phosphorus

Phosphorus is one of the three essential nutrients for life, and in northeastern lakes, it is often the controlling, or limiting, nutrient in lake productivity. Total phosphorus is a measure of all forms of phosphorus, both organic and inorganic. Total phosphorus concentrations are directly related to the trophic status (water quality conditions) of a lake. Excessive amounts of phosphorus can lead to algae blooms and a loss of dissolved oxygen within the lake. Surface water (epilimnion) concentrations of total phosphorus less than 10 ppb are associated with oligotrophic (clean, clear water) conditions. Concentrations greater than 25 ppb are associated with eutrophic (nutrient-rich) conditions.

The total phosphorus in the upper waters of Sylvia Lake ranged from 7 ppb to 13 ppb. The average for outlet marsh was 9 ppb, for lake center 9 ppb and for inlet the average was 10 ppb. This is indicative of oligotrophic conditions and the results for all three stations were very similar.

Chlorophyll-a

Chlorophyll-a is the green pigment in plants used for photosynthesis, and measuring it provides information on the amount of algae (microscopic plants) in lakes. Chlorophyll-a concentrations are also used to classify a lakes trophic status. Concentrations less than 2 ppb is associated with oligotrophic conditions and those greater than 8 ppb are associated with eutrophic conditions.

The chlorophyll-a concentrations in the upper waters of Sylvia Lake ranged from 1.47 ppb to 2.75 ppb. The average concentration for outlet marsh was 1.98 ppb, for lake center it was 1.91 ppb and for inlet it was 2.07 ppb. This is indicative of oligotrophic conditions and the results for all three stations are similar.

Secchi Disk Transparency

Transparency is a measure of water clarity in lakes and ponds. It is determined by lowering a 20 cm black and white disk (Secchi) into a lake to the depth where it is no longer visible from the surface. This depth is then recorded in meters. Since algae are the main determinant of water clarity in non-stained, low turbidity (suspended silt) lakes, transparency is also used as an indicator of the trophic status of a body of water. Secchi disk transparencies greater than 4.6 meters (15.1 feet) are associated with oligotrophic conditions, while values less than 2 meters (6.6 feet) are associated with eutrophic conditions (DEC & FOLA, 1990).

Secchi disk transparency in Sylvia Lake ranged from 4.7 to 6.5. The average for outlet marsh was 5.8 meters, for lake center it was 5.9 meters and for inlet the average was 5.5 meters. These values are indicative of oligotrophic conditions and the values are similar for all three stations.

Nitrate

Nitrogen is another essential nutrient for life. Nitrate is an inorganic form of nitrogen that is naturally occurring in the environment. It is also a component of atmospheric pollution. Nitrogen concentrations are usually less than 1 ppm in most lakes. Elevated levels of nitrate concentration may be indicative of lake acidification or wastewater pollution.

Nitrate in Sylvia Lake ranged from 0.0 to 0.1 ppm. The average nitrate in the upper waters was found to be 0.0 ppm for all three locations.

Chloride

Chloride is an anion that occurs naturally in surface waters, though typically in low concentrations. Background concentrations of chloride in Adirondack Lakes are usually less than 1 ppm. Chloride levels 10 ppm and higher is usually indicative of pollution and, if sustained, can alter the distribution and abundance of aquatic plant and animal species. The primary sources of additional chloride in Adirondack lakes are road salt (from winter road de-icing) and wastewater (usually from faulty septic systems). The most salt impacted waters in the Adirondacks usually have chloride concentrations of 100 ppm or less.

The chloride in the upper waters of Sylvia Lake ranged from 10 to 15 ppm. The average for outlet marsh was 13.7 ppm, for center lake it was 13.0 ppm and for Inlet it was 14.0 ppm.

Conductivity

Conductivity is a measure of the ability of water to conduct electric current, and will increase as dissolved minerals build up within a body of water. As a result, conductivity is also an indirect measure of the number of ions in solution, mostly as inorganic substances. High conductivity values (greater than 50 μ ohms/cm) may be indicative of pollution by road salt runoff or faulty septic systems. Conductivities may be naturally high in water that drains from bogs or marshes. Eutrophic lakes often have conductivities near 100 μ ohms/cm, but may not be characterized by pollution inputs. Clean, clear-water lakes in our region typically have conductivities up to 30 μ ohms/cm, but values less than 50 μ ohms/cm are considered normal.

The conductivity in the upper waters of Sylvia Lake ranged from 161.6 μ ohms/cm to 227.0 μ ohms/cm. The average conductivity for outlet marsh was 200.2 μ ohms/cm, for lake center 196.2 μ ohms/cm, and for the inlet it was 198.5 μ ohms/cm. The values were similar for all three stations.

Color

The color of water is affected by both dissolved materials (e.g., metallic ions, organic acids) and suspended materials (e.g., silt and plant pigments). Water samples are collected and compared to a set of standardized chloroplatinate solutions in order to assess the degree of coloration. The measurement of color is usually used in lake classification to describe the degree to which the water body is stained due to the accumulation of organic acids. The standard for drinking water color, as set by the United States Environmental Protection Agency (US EPA) using the platinum-cobalt method, is 15 Pt-Co. However, dystrophic lakes (heavily stained, often the color of tea) are common in this part of the country, and are usually found in areas with poorly drained soils and large amounts of coniferous vegetation (i.e., pines, spruce, hemlock). Dystrophic lakes usually have color values upwards of 75 Pt-Co.

Color can often be used as a possible index of organic acid content since higher amounts of total organic carbon (TOC) are usually found in colored waters. TOC is important because it can bond with aluminum in water, locking it up within the aquatic system and resulting in possible toxicity to fish (see Aluminum).

The color in the upper waters of Sylvia Lake ranged from 10 Pt-Co to 23 Pt-Co. The average color for outlet marsh was 16.7 Pt-Co, for lake center it was 14.0 Pt-Co, and for inlet it was 10 Pt-Co. All three stations had similar color levels.

Aluminum

Aluminum is one of the most abundant elements found within the earth's crust. Acidic runoff (from rainwater and snowmelt) can leach aluminum out of the soil as it flows into streams and lakes. If a lake is acidic enough, aluminum may also be leached from the sediment at the bottom of it. Low concentrations of aluminum can be toxic to aquatic fauna in acidified water bodies, depending on the type of aluminum available, the amount of dissolved organic carbon available to bond with the aluminum, and the pH of the water. Aluminum can form thick mucus that has been shown to cause gill destruction in aquatic fauna (i.e., fish, insects) and, in cases of prolonged exposure, can cause mortality in native fish populations (Potter, 1982). Aluminum concentrations are reported as mg/L of total dissolved aluminum.

The aluminum was not measured due to lack of a site visit by AWI staff.

Dissolved Oxygen

The dissolved oxygen in a lake is an extremely important parameter to measure. If dissolved oxygen decreases as we approach the bottom of a lake we know that there is a great amount of bacterial decay that is going on. This usually means that there is an abundance of nutrients, like phosphorous that have collected on the lake bottom. Oligotrophic lakes tend to have the same amount of dissolved oxygen from the surface waters to the lake bottom, thus showing very little bacterial decay. Eutrophic lakes tend to have so much decay that their bottom waters will have very little dissolved oxygen. Cold-water fish need 6.0 ppm dissolved oxygen to thrive and reproduce. Warm water fish need 4.0 ppm oxygen.

The dissolved oxygen profiles for 2006 were not measured due to the lack of a site visit.

Summary

Sylvia Lake was an unproductive oligotrophic lake during 2006 at all three stations tested. Based on the results of the 2006 Adirondack Lakes Assessment program, the acidity status of Sylvia Lake is considered to be satisfactory with no possible future threat from further acidic inputs due to its' high alkalinity and pH levels. All three stations showed similar results for all tests performed.

Literature Cited

DEC & FOLA. (1990). <u>Diet for a Small Lake: A New Yorker's Guide to Lake</u> <u>Management.</u>

New York State Department of Environmental Conservation & The Federation of Lake Associations, Inc.: Albany, New York.

Greenberg, A.E., Eaton, A.D., and Leseri, L.A. (editors). (1999). <u>Standard Methods for</u> the

Examination of Water and Wastewater, 20th Edition. American Public Health Association: Washington, D.C.

Potter, W. (1982). *The Effects of Air Pollution and Acid Rain on Fish, Wildlife and Their Habitats – Lakes.* Technical Report FWS/OBS – 80/50.4. United States Fish and Wildlife Service, Biological Services Program: Washington, D.C.

Appendix A

Water Quality Data